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Abstract

This article describes the software architecture of an autonomous, interactive tour-guide
robot. It presents a modular, distributed software architecture, which integrates localiza-
tion, mapping, collision avoidance, planning, and various modules concerned with user
interaction. The approach does not require any modifications to the environment. To cope
with the various challenges in dynamic and ill-structured environments, the software relies
on probabilistic computation, on-line learning, any-time algorithms, and distributed con-
trol. Special emphasis has been placed on the design of interactive capabilities that appeal
to people’s intuition. In mid-1997, the robot was successfully deployed in a densely pop-
ulated museum, demonstrating reliable operation in hazardous public environments, and
raising the museum’s attendance by more than 50%. In addition, people all over the world
controlled the robot through the Web.
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1 Introduction

Ever since novelist Karel Capek and science fiction author Isaak Asimov invented the term
“robot” [1, 2, 18], the dream of building robots—willing, intelligent and human-like ma-
chines that make life pleasant by doing the type work we don’t like to do—has been an
active dream in people’s minds. With universal personal robots still far beyond reach, we
are currently witnessing a rapid revolution in robots that directly interact with people and
affect their lives [132]. This paper describes one such robot, which is really just a step
in this direction. Presented here is the software architecture of an interactive robot named
RHINO, which has been built to assist and entertain people in public places, such as mu-
seums. RHINO is shown in Figure 1. Its primary task is to give interactive tours through
an exhibition, providing multi-modal explanations to the various exhibits along the way
(verbal, graphical, sound). In May 1997, RHINO was deployed in the “Deutsches Museum
Bonn” (see Figure 2). During a six-day installation period the robot gave tours to more than
2,000 visitors. Through an interactive Web-Interface, people from all over the world could
watch the robot’s operation and even control its operation—and more than 2,000 did.

On the software side, on which this article focuses, RHINO employs some of the most
recent developments in the field of artificial intelligence (AI) and robotics. At its core,
RHINO relies upon data-driven probabilistic representation and reasoning to cope with the
uncertainties that necessarily arise in complex and highly dynamic environments. RHINO
can also learn models (maps) of its environment and change its plans on-the-fly. It is
equipped with an easy-to-understand multi-modal user interface, and it can react to the
presence of people in various, entertaining ways.

The necessity to employ state-of-the-art Al technology arose from the complexity of the
task domain. The majority of RHINO’s users were complete novices in robotics; yet, since
the typical tour lasted for less than ten minutes, appealing to visitors’ intuition was essential
for the success of the mission. RHINO’s environment, the museum, was densely populated.
Most of the time, RHINO was “lucky” in that it lead the way when giving a tour with people
following. At times, however, we counted more than a hundred people that surrounded the
robot from all sides, making it difficult for the robot to reach the exhibits as planned while
not losing its orientation. The museum itself, its geometry and its exhibits, posed further
challenges on the software. While there were several narrow passages in the environment
in which accurate motion control was essential, most of the museum consisted of wide
open spaces that, to a large extent, lacked the necessary structure for the robot to orient
itself. One of the key constraints was the necessity to avoid collisions with obstacles at all
costs, humans and exhibits alike. Many of the obstacles, however, were literally “invisible,”
i.e., they could physically not be detected with the robot’s sensors. The inability to sense
certain obstacles was not necessarily due to the lack of an appropriate sensor suite—in fact,
RHINO used four different sensor systems, ranging from laser range finders, sonar, and
active infrared sensors to touch-sensitive panels—rather, it was the nature of the obstacles.
For example, many exhibits were protected by glass cages, whose very purpose implied
that they were not detectable by light-based sensors such as cameras, laser, or infrared,
and whose smoothness made it impossible to detect them reliably even with sonar. Other
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Fig. 1: The robot and its sensors. Fig. 2: RHINO, pleasing the crowd.

exhibits were placed on solid metal plates, many of which were below the range of our
lowest sensors. Not all objects in the museum were static. In particular, the museum
provided stools for the visitors to rest, and people tended to leave them behind at random
places, preferably close to exhibits. The problem of safe navigation was made more difficult
by the speed requirements in the museum. To be interesting to the people, the robot had
to move at walking speed whenever possible. At speeds of up to 80 cm/sec the inertia
of the robot is significant; turning or stopping on the spot is impossible. Lastly, some of
the users were not at all cooperative, imposing further difficulties for the software design.
Often, while we were not paying attention, museum visitors tried to “challenge” the robot.
For example, by permanently blocking its way, they sometimes sought to make the robot
leave the designated exhibition area towards other parts of the museum, where several
unmapped and undetectable hazards existed (including a staircase). We quickly learned
that one cannot necessarily expect humans to be cooperative, so the safety of the system
may not depend on specific behavioral requirements on the side of the users. On the other
hand, people are thrilled if robots interact with them—just like they are if people interact
with them. Thus, a primary component of a successful tour-guide is the ability to notice
the presence of people, and to interact with them in a meaningful, appealing way. In fact,
when we interviewed museum visitors, most of them assigned more weight to the robot’s
interactive capabilities than to its navigational skill.

This article provides an overview of the major components of RHINO’s software ar-
chitecture. As this description of the museum suggests, operating a robot in public envi-
ronments as complex (and dangerous) as it poses research challenges that go beyond many
of those found in most office environments. To cope with them, this paper describes a
collection of algorithms which provide the robot with some unique features, such as its
ability navigate smoothly and safely at high speed, to determine its location in an unmod-
ified environment and populated, the ability to quickly find detours if paths are blocked,
and the ability to engage and interact with people. We believe that these characteristics are
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Fig. 3: Major components of the RHINO system and major flow of information.

prototypical for a large variety of application domains for mobile robots, and conjecture
that virtually all of the technology described in this paper can be applied to a much larger
variety of tasks.

2 Architectural Overview

The overall software architecture consists of approximately 25 modules (processes), which
are executed in parallel on 3 on-board PCs and 2 off-board SUN workstations, connected
via Ethernet. The software modules communicate using TCX [39], a decentralized com-
munication protocol for point-to-point socket communication. Figure 3 shows the overall
software architecture along with the major software modules and the flow of information
between them. Similar to other robot control architectures, the RHINO system is also or-
ganized in a hierarchical manner, with the device drivers at the lowest level and the user
interfaces at the highest. The hierarchy, however, is not strict in the sense that modules
would pass information only within the same or across adjacent layers. In RHINO’s soft-
ware, modules often communicate across multiple layer boundaries.

Among the various principles that can be found in RHINO’s software system, the fol-
lowing three are the most important ones:
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1. Probabilistic representations, reasoning, and learning. Robot perception is in-

accurate and incomplete. Therefore, robots are inherently unable to determine the .
state of the world. Probabilistic data structures lend themselves nicely to the in-
herent uncertainty inside a robot. Instead of extracting just a single interpretation
from sensor data, as is traditionally done in the field of robotics, probabilistic meth-
ods extract multiple interpretations (often all possible ones), weighted by a numeric
plausibility factor that is expressed as a conditional probability. By considering mul-
tiple hypotheses, the robot can deal in a mathematically elegant way with ambigui-
ties and uncertainty. In our experience, robots that use probabilistic representations
recover easier from false beliefs and therefore exhibit more robust behavior. In ad-
dition, probability theory provides nice and elegant ways to integrate evidence from
multiple sources over time, and to make optimal decisions under uncertainty. Re-
cently, probabilistic methods have been employed in a variety of successful mobile
robots [15, 57, 65, 100, 120], for reasons similar to the ones given here.

2. Resource flexibility. Most of RHINO’s software can adapt to the available compu-
tational resources. For example, modules that consume substantial processing time,
such as the motion planner or the localization module, can produce results regard-
less of the time available for computation. The more processing cycles are available,
however, the more accurate, or optimal, the result. In RHINO’s software, resource
flexibility is achieved by two mechanisms: selective data processing and any-time
algorithms [33]. Some modules consider only a subset of the available data, such as
the localization routine. Other modules, such as the motion planning module, can
quickly draft initial solutions which are then refined incrementally, so that an answer
is available when needed.

3. Distributed, asynchronous processing with decentralized decision making. RHINO’s
software does not possess a centralized clock or a centralized communication mod-
ule. Synchronization of different modules is strictly de-central. Time-critical soft-
ware (e.g., all device drivers), and software that is important for the safety of the
robot (e.g., collision avoidance), are run on the robot’s on-board computers. Higher-
level software, such as the task control module, is run on the stationary computers.
This software organization has been found to yield robust behavior even in the pres-
ence of unreliable communication links (specifically the radio link which connected .
the on-board and off-board computers) and various other events that can temporarily
delay the message flow or reduce the available computational time. The modular,
decentralized software organization eases the task of software configuration. Each
module adds a certain competence, but not all modules are required to run the robot. )

The remainder of this paper will describe those software modules that were most essential
to RHINO’s success.
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3 State Estimation

To find its way safely through a populated environment with invisible obstacles, RHINO
employs several methods to estimate its current state. State comprises the robot’s position
and the position of people and obstacles. This section describes RHINO’s approach to
localization and mapping, both of which use probabilistic estimators for interpreting and
integrating sensor evidence.

3.1 Localization

At the core of RHINO’s navigation routines is a module that continuously estimates the
robot’s position in z-y-6 space, where = and y are the coordinates of the robot in a 2D
Cartesian coordinate system and @ is its orientation. RHINO employs a variant of Markov
localization, which is a probabilistic method for robot localization [15, 65, 100, 120, 125].
Its input is a stream of sensor readings from the robot’s proximity sensors, interleaved with
a sequence of action commands. Throughout this paper, this sequence will be denoted

d = {0(1),0(2)...,0(T)} (1)

where each o(*) with t € {1,...,T} is cither a sensor reading or an action command. The
localization module computes, incrementally and in real-time, a probability distribution
P(¢1)) that expresses the robot’s belief to be at location £(*) at time t where each £ is a
location in the three-dimensional z-y-6 space.

The robot’s belief at time ¢ is described by the conditional probability
PEY) = P(g]o®,0® .. o) @

To compute this probability, three aspects have to be discussed: (1) initialization, (2) sens-
ing, and (3) motion. The latter two, sensing and motion, have opposite effects on the robot’s
belief. While sensor readings convey information about the robot’s position, thereby often
decreasing the entropy of P(£(!)), actions cause a loss of information due to the inaccurate
nature of robot motion, and therefore increase the entropy of P(£(*)).

3.1.1 Initialization

Initially, at time ¢t = 0, P(¢ (0)) reflects the robot’s initial state of knowledge in the absence
of any data d. If the robot’s initial position is £ and if it knows exactly where it is, P(£(%))
is initialized with a Dirac distribution

: — ¢0
P(E®) = { ) ez ®
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laser data —— aprroximated laser data —
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Fig. 4: The conditional probability P(o | dist()) obtained from 11,000,000 laser measure-
ments (left) and its approximation using a mixture of a Gaussian, a uniform and a Dirac

density (right).

If the robot does not know where it is, P(£) is initialized with a uniform distribution. Of
particular interest in this paper is the latter case, since the robot was often placed somewhere
in the museum without initial knowledge of its position. Thus, the robot had to localize
itself under global uncertainty, a problem also known as global localization or the kidnaped

robot problem [37].

3.1.2 Robot Perception

Suppose at time ¢, the robot receives a sensor measurement o). In RHINO’s localization
module, o(?) is either a laser scan or a sonar scan. This measurement is used to update the
internal belief as to where the robot is, according to the following rule:

PED | oM .. oMy
- p(o(t) | f(t), oW ..., O(t—l)) p(f(t) | oM ..., O(t—l))
= a P €0) PED o, ..., o0D) @
Here « is the Bayes normalizer that ensures that the probabilities on the left-hand side of
(@) sumup to 1, and P(€® | o) ... 0(*~1)) is the robot’s belief just before sensing o®).

The first step of the derivation of (4) follows from Bayes rule. The second step rests on the
following conditional independence assumption, also called Markov assumption:

P(o® €@, o), olt-) = P(o® | £)) 5)

This conditional independence assumption states that if the robot’s location at time ¢ is
known, knowledge of past sensor readings oM, ..., 0*=1) do not convey any information
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(a) laser scan and map (b) probability distribution for different positions

Figure 5: Probabilistic model of perception: (a) Laser range scan, projected into a previ-
ously acquired map. (b) The probability P(o | £), evaluated for all positions £ and projected
into the map (shown in grey). The darker a position, the larger P(o | £).

relevant to the prediction of o(*). In other words, the Markov property assumes there is no
state in the environment other than the robot’s own location. In most realistic environments
such as the museum, this assumption is violated; for example, people often block the robot’s
sensors for multiple time steps, which makes sensor readings conditionally dependent even
if the exact robot location is known. Section 3.1.6 will explicitly address this problem. For
now, the Markov assumption will be adopted, as it is mathematically convenient and as it
justifies a simple, incremental update rule.

The update equation (4) relies on the probability P(o*) | £(*)) of observing o(?) at
location £(Y), which henceforth is called the perceptual model. The perceptual model does
not depend on ¢; thus, for the reader’s convenience we will omit the superscript (¢) and
write P(o | £) instead.

RHINO uses its proximity sensors (sonars, lasers) for localization. Its perceptual model
is obtained using a generic noise model of the robot’s sensors along with a map of the
environment. More specifically, P(o | £) is computed in two steps:

P(o]§) = P(o]dist(¢)) (6)

Here the function dist:= — R computes the expected measurement that a noise-free
sensor would obtain in a stationary environment. The value of dist(£) is computed by ray
tracing in a map of the robot’s environment. The remaining probability, P(o | dist(£)),
models the noise in perception. It is learned from data. The left diagram in Figure 4 shows
the empirical distribution of P(o | dist(£)) obtained from 11 - 10® measurements; here
“expected distance” refers to dist(€), “measured distance” refers to o, and the vertical axis
plots the probability P(o | dist(§)). In RHINO’s software, P(o | dist(£)) is approximated
by a mixture of a Gaussian, a uniform, and a Dirac distribution, as shown in the right
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(@) (®

Figure 6: Probabilistic model of robot motion: Accumulated uncertainty after moving (a)
40 meter, (b) 80 meter.

diagram in Figure 4. The coefficients of these distribution are learned from data, using the
maximum likelihood estimator [6].

Figure 5 illustrates the perceptual model in practice. An example laser range scan is
shown in Figure 5a. Figure 5b shows, for each position ¢, the likelihood P(o | &) of

this specific range scan in a pre-supplied map (projected into 2D). As is easy to be seen,
P(o | &) is high in the main corridor, whereas it is low in the rooms.

3.1.3 Robot Motion

Motion changes the location of the robot. Thus, if o(!) is a motion command, the robot’s
belief changes according to the following rule:

P [0 o)
- / P+ | €0 oM, . o®) Pe® | o), ... o®) dg®

= /P(g(t+1) |§(t),0(t)) p(é(t) l 0(1)’___700—1)) dg(t) )

This update rule is incremental, just like the perceptual update rule (4). The first step in its
derivation is obtained using the Theorem of total probability, and the second step is based
on a similar Markov assumption as the one above:

p(g(t+1) lg(t),o(t)) - p(g(tﬂ) lg(t)70(1), N ,,o(t)) ®)

In fact, both Markov assumptions described in this section are consequences of a single
one, which states that the location of the robot is the only state in the environment.

Equation (7) relies on P(¢(+1) | £() o), which is a probabilistic model of robot
motion. Since the motion model does not depend on ¢, we will henceforth denote it by
P(¢ | €, 0). In our implementation, P(£ | &, 0) is realized using a mixture of two in-
dependent, zero-centered distributions, which model rotational and translational error, re-
spectively [15, 128]. The width of these distributions are proportional to the length of the
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1. Initialization: P(€) «— Belpy; (¢(®)

2. For each observation o do:
P() +— P(o]&) P(§) ©)
P(€) «— P [ / P(¢) dg’]_l (normalization) (10)
3. For each action command o do:

PE) — [PEI€,0) P(E) e 1)

Table 1: Markov localization—the basic algorithm.

motion command. Figure 6 illustrates RHINO’s motion model for two example motion
commands. Shown there are “banana-shaped” distributions P(¢ | £, o), which result if
the robot starts at £’ and executes the motion commands specified in the figure caption.
Both distributions are of course three-dimensional (in z-y-6-space); Figure 6 shows their
2D projections into z-y-space.

3.1.4 Grid-based Markov Localization

The generic, incremental Markov localization algorithm is depicted in Table 1. Here the
time index is omitted, to emphasize the incremental nature of the algorithm. In experimen-
tal tests this method has been demonstrated to localize the robot reliably in static environ-
ments even if it does not have any prior knowledge about the robot’s position [15, 16, 43].

Recently, different variants of Markov localization have been developed [15, 65, 100,
120]. These methods can be roughly distinguished by the nature of the state space represen-
tation. Virtually all published implementations of Markov localization are based on coarse-
grained representations of space, often with a spatial resolution of less than one meter and
an angular resolution of 90 degrees. For example, in [65, 100, 120] Markov localization
is used for landmark-based corridor navigation and the state space is organized according
to the topological structure of the environment. Unfortunately, coarse-grained, topological
representations are insufficient for navigating in the close vicinity of invisible (but known)
obstacles, such as the glass cages described above. Thus, RHINO’s localization algorithm
differs from previous approaches in that it employs a fine-grained, grid-based decomposi-
tion of the state space [15]. In all our experiments reported here, the spatial resolution was
15cm and the angular distribution was 2°.

The advantage of this approach is that it provides a high accuracy with respect to the
position and orientation of the robot. Its disadvantage, however, is the huge state space
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Fig. 7: Global localization in the Deutsches Museum Bonn. The left image shows the
belief state after incorporating one laser scan. After incorporating a second scan, the robot
uniquely determined its position (right). ‘

which has to be maintained and updated. With such a high resolution, the number of
discrete entities is huge, and the basic algorithm cannot be run fast enough on our current
low-cost computational hardware for the algorithm to be of practical use.

3.1.5 Selective Computation

To cope with the large numbers of grid cells, RHINO updates them selectively. The legiti-
macy of selectively updating P(&)—instead of updating all values at all times—is based on
the observation that most of the time, the vast majority of grid cells have probability van-
ishingly close to zero and, thus, can safely be ignored. This is because in most situations,
the robot knows its location with high certainty, and only a small number of grid cells close
to the true location have probabilities that are significantly different from zero.

In RHINO’s localization algorithm, grid cells whose probability are smaller than a
threshold 6 are not updated. Instead, they are represented by a single value, which uni-
formly represents the probability of all non-updated grid cells [14]. In the museum exhibit,
the threshold 6 was set to 0.1% of the a priori position probability. This led to an aver-
age savings of two orders of magnitude while not reducing the accuracy of the localization
algorithm in any noticeable way.

Figure 7 shows a typical example of global localization in the Deutsches Museum
Bonn. RHINO is started with a uniform distribution over its belief state. The probabil-
ity distribution given after integrating the first sensor scan is shown on the left side of
Figure 7. Thus, after incorporating a single sensor scan, the probability mass is readily
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centered on a much smaller number of grid cells. After incorporating a few more sensor
scans, the robot knows its position with high certainty. In the museum exhibit, the localiza-
tion algorithm was run on a single-processor SUN 170Mhz UltraSparc station, equipped
with 256MB RAM. The time required to process a sensor scan varied, depending on the
uncertainty in the robot’s position. Initially, when the robot was maximally uncertain about
its position and therefore had to update every single value in P(£), processing a sensor
scan required approximately 20 seconds. After the initial localization, the robot’s uncer-
tainty was consistently low, which reduced the computational complexity tremendously.
The average processing time for processing a sensor scan was approximately 0.5 sec. Since
our sensors (sonar and laser) generate approximately 8 scans per second, not every sensor
reading was considered in localization. In addition, only a subset of the 360 range read-
ings generated with the laser range finder were considered, since these readings are highly
redundant. The practical success of the localization algorithm, however, demonstrates that
sufficiently much sensor data was incorporated while the robot was moving.

3.1.6 Entropy Gain Filters: Beyond The Markov Assumption

Unfortunately, the basic Markov localization approach is bound to fail in densely populated
environments. Markov localization approaches, by definition, assume that the environment
is static—a direct consequence of the underlying Markov assumption. The presence of
people violates the Markov assumption by introducing additional state.

In the museum, people often followed the robot closely for extended durations of time.
In such situations, the Markov assumption can be fatal. For example, when multiple visitors
collaboratively blocked the robot’s path, the sensor readings often suggested the presence
of a wall in front of the robot. For such readings o, P(o | &) is maximal for locations &
next to walls. Since the Markov localization algorithm incorporates P(o | £) in a multi-
plicative way every time a sensor reading is taken, multiple iterations of this algorithm will
ultimately make the robot believes that it is next to a wall. This property is a direct conse-
quence of the conditional independence assumption (Markov assumption) that was used in
the derivation of the Markov localization algorithm,

At first glance, one might attempt to remedy the problem by introducing additional
state features in the Markov approach. Instead of estimating the location of the robot as the
only state, one could extend Markov localization to simultaneously estimate the locations
of the people. With such an enriched state representation, the Markov assumption would be
justified and the approach would therefore be applicable. Unfortunately, such an extension
is computationally expensive, since the computational and memory complexity increases
exponentially in the number of state variables. In addition, such an approach requires prob-
abilistic models of the behavior of the various non-stationary obstacles, such as humans,
which are difficult to obtain.

In our approach, we pursued a different line of thought: filtering. The idea is to sort
sensor readings into two buckets, one that corresponds to known obstacles such as walls,
and one that corresponds to dynamic obstacles such as humans. Only the former readings
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are incorporated into the position estimation, whereas the latter ones are simply discarded.
The filtering approach does not explicitly estimate the full state of the environment; rather,
it reduces the damaging effect that arises from state other than the robot’s location.

The specific filter used in our implementation is called entropy gain filter and works as
follows. The entropy H (P) of a distribution P is defined by [20]

H(P) = - [ P(e)logP(9) de. (12)

Entropy is a measure of uncertainty: The larger the entropy, the higher the robot’s un-
certainty as to where it is. Entropy gain measures the relative change of entropy upon
incorporating a sensor reading into P. More specifically, let o denote a sensor scan, and
let o; denote an individual component of the scan (i.e., a single range measurement). The
entropy gain of a probability distribution P with respect to a sensor measurement o; is

defined as:
AH(P|o;) = H(PED o)) — H(PED)) (13)

Entropy gain measures the change of certainty. A positive entropy gain indicates that af-
ter incorporating o;, the robot is less certain about its position. A negative entropy gain
indicates an increase in certainty upon incorporating o;.

RHINO’s entropy gain filter filters out sensor measurements that, if used, would de-
crease the robot’s certainty. This is achieved by considering only those o; for which
AH(P | 0;) < 0. The entropy gain filter makes robot perception highly selective, in that
only sensor readings are considered that confirm the robot’s current belief. The resulting
approach does not comply with the original Markov assumption.

Figure 8 shows a prototypical situation which illustrates the entropy gain filter. Shown
there are examples where RHINO has been projected into the map at its most likely posi-
tion. The lines indicate the current proximity measurements, some of which correspond to
static obstacles that are part of the map, whereas others are caused by humans (max-range
measurements are not shown). The different shading of the measurements demonstrates the
result of the entropy gain filter. The black values reduce entropy, whereas the gray values
would increase the robot’s entropy and are therefore filtered out. Here all measurements of
humans are successfully filtered out. These examples are prototypical. In the museum ex-
hibit, we never observed that a reading caused by a dynamic obstacle (such as a human) was
not successfully filtered out. We did observe, however, that the robot occasionally filtered
our measurements that stemmed from stationary obstacles that were part of the map.

The entropy gain filter proved to be highly effective in identifying non-static obstacles
and in filtering sensor readings accordingly. Throughout the complete deployment period,
the robot incorporated sufficiently many sensor readings to never lose track of its position.
Using the data gathered in the museum, we evaluated the accuracy of our localization al-
gorithm systematically using 118 reference positions, whose coordinates were determined
manually [45]. One of the data sets, shown in Figure 9, contains data collected during 4.8
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Distance at final position: 1 cm
Certainty at final position: 0.987

Fig. 8: Sensor measurements (black) selected by the entropy filter from a typical scan (left
image) and endpoints of selected scans on a longer trajectory (right image)

hours of robot operation in peak traffic, in which the robot traversed 1,540 meters. In this
data set, more than 50% of all sensor readings were corrupted by people for longer periods
of time. The average localization error was found to be smaller than 10cm [45]. In only
one case did we observe some noticeable error. Here the robot’s internal belief deviated
approximately 30cm from the real position. As a result, the robot touched a large, invisible
metal plate in the center of the museum. The localization error was preceded by a failure
of the robot’s sonar sensors for an unknown duration of time.

Unfortunately, the basic entropy gain filter also has a disadvantage. When applied as
described above, it impairs the robot’s ability to recover from large errors in its localiza-
tion. This is because if the robot’s position estimate is wrong, the entropy gain filter might
filter out those sensor readings that convey information about its correct position, making
a recovery impossible. A successor of the entropy gain filter, which combines the advan-
tages of entropy gain filters while still retaining the ability to globally localize the robot, is
described in [45]. As discussed in more depth there, Markov localization combined with
the entropy gain filter was able to accurately estimated the position of the robot throughout
the entire deployment period, and the entropy filter played a crucial role in its success.

3.1.7 Finding People

As an aside, it is interesting to notice that the entropy gain filter fulfills a secondary purpose
in RHINO’s software. Sensor measurements o; with AH (P | 0;) > ~ (with v > 0)
indicate the presence of an unexpected obstacle, such as people. Thus, the inverse of the
entropy gain filter is a filter that can detect people. This filter differs from many other
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Duration: 4.8 hours
Distance: 1540 meters

Fig. 9: One of the data sets used to evaluate the accuracy of RHINO’s localization in
densely populated environments. Here more than half of all sensor readings were corrupted
by people; yet the robot managed to keep its average localization error below 10 cm.

approaches in the literature on people detection [63, 67] in that it can find people who do
not move, and even while the robot itself is in motion. As will be described in more detail
below, this filter, in combination with a criterion that measures the robot’s progress towards
its goal, was used to activate the robot’s horn. As a result, the robot blew its horn whenever
humans blocked its path; an effect, that most visitors found highly entertaining.

3.2 Mapping

The problem of mapping is the problem of estimating the occupancy of all (z, y) locations
in the environment [7, 34, 96, 127] from sensor data. Mapping is essential if the environ-
ment changes over time, specifically if entire passages can be blocked. In the museum,
stools or people often blocked certain regions or passages for extended durations of time.
RHINO’s ability to acquire maps on-the-fly enabled it to dynamically plan detours, which
prevented it from getting stuck in many cases.

The statistical estimation involved in building occupancy maps from sensor data is
similar to the probabilistic estimation of the robot’s location. Let c., denote a random
variable with events in {0, 1} that denotes the occupancy of a location (,y) (in world
coordinates). Here 1 stands for occupied, and 0 stands for free. Then, the problem of
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mapping is to estimate
P({cay} [ o, o) (14)

where the set of all occupancy values {c;,} denotes the map. Since the variables to be
estimated—the map—is usually extremely high-dimensional (many of our maps contain
10° or more grid cells), it is common practice to treat the occupancy estimation problem
independently for each location (z,y) [96, 127]. This effectively transforms the high-
dimensional occupancy estimation problem into a collection of one-dimensional estimation
problems

{ Plcgy | oM, ..., 00} } (15)

which can be tackled very efficiently.

3.2.1 Temporal Integration of Evidence

The temporal integration of sensor evidence is basically analogous to Markov localiza-
tion. Just like Markov localization, our mapping approach relies on the following Markov
assumption

P(0) | ey, 0,01y = P(o® |0 ¢,,) fort # 1t/ (16)

which renders sensor data conditionally independent given the true occupancy of the grid
cell (z,y). Here o(*) stands for the sensor reading taken at time ¢. To separate the problem
of mapping from that of localization, it is assumed that the robot’s location £(?) is known?;
henceforth, £() will be omitted in the mathematical derivation. In our implementation, the
maximum likelihood estimation

é(t) = arggnaxp(ﬁ(t)) an

is used as the robot’s location.

Armed with all necessary assumptions, we are now ready to derive an efficient algo-
rithm for statistical occupancy estimation from data. The probability that a location (z, y)
is occupied given the data is given by

P(O(t) l Cry, 0(1), ceey o(t'—l)) P(Cmy I 0(1)’ - 0(75-—1))
P(o(®) | o1), ..., o(t=1)
P(O(t) | czy) P(cgy | 0(1), .. .,o(t’l))
P(o® | o), ... olt=1))
P(cgy | o)) P(o®) P(cgy | oY), ..., ol=1))
P(cgy) P(o® | oM. .. olt=1))

Plegy | oM, ..., 00y =

(19)

!See [128] for an approach to concurrent localization and mapping that relaxes these assumption and esti-
mates both the robot’s location and the location of the obstacles using a single, mathematical approach.
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1. Initialization: P(cg,) <— 0.5

2. For each observation o do:

P(esy |0) _Plesy) )"1(18)

P(czy) — 1“<1+1-—P(cxy]0) 1 — P(cay)

Table 2: Mapping—the basic algorithm.

This transformation is obtained via Bayes rule, followed by applying the Markov assump-
tion and a second application of Bayes rule.

The binary nature of occupancy—a location (2, y) is either occupied or not—can be
exploited to derive a slightly more compact update equation than in the real-valued case of
position estimation [96]. In analogy to (19), the probability that a location (z,y) is free
(unoccupied) is given by

P(—'cxy | O(t)) P(O(t)) P(ﬂcxy I 0(1), .. .,O(t_l))

(20
Placay) PO [ oD, o-D) 0

P(—cgy | oM, ..., 0

Dividing (19) by (20) yields the following expression, which is often referred to as the odds
of (z, y) being occupied [103]:

P(ny l 0(1)’ - "O(t)) _ P(ny | O(t)) P(=cgy) Plezy | b(l)y cey 0(1_1))1
P(=cpy | 00, ,00) — P(acay | 00) Plegy) P(mcay | 00, .., 0=}

21)

it follows that the desired probability is given by

P(cgy | oM, .. .,o(t)) (22)

_ 1 (1 _Pleylo®) 1= Plew) Pleay [oD,.. 0l -
- 1- P(CWJ l O(t)) P(ny) 1- P(czy | 0(1)7 . '10(t_1))

Here P(c,,) represents the prior distribution of c;, (in the absence of data), which in out
implementation is set to 0.5 and can therefore be ignored.

As is easily seen, the latter estimation equation can be computed incrementally, leading
to the mapping algorithm shown in Table 2. The probability P(c., | o) is called the inverse
sensor model (or sensor interpretation), whose description is subject to the next section.
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Figure 10: (a) An artificial neural network maps sensor measurements to probabilities of
occupancy. (b) An example sonar scan, along with the local map generated by the neural
network. The darker a region, the more likely it is to be occupied.

3.2.2 Neural Network Sensor Interpretation

In RHINO’s mapping approach, P(c;, | 0) maps a sensor reading to a conditional prob-
ability that location (z,y) is occupied (under knowledge of the actual position £). In
traditional approaches to mobile robot mapping, P(cy, | o) is usually crafted by hand,
based on knowledge of the characteristics of the respective sensor. In our approach, which
is described in more detail in [127], an artificial neural network is trained with Back-
Propagation [56, 108] to approximate P(c;, | o) from data. This interpretation network,
which is shown in Figure 10a, accepts as input an encoding of a specific (z, y)-location,
encoded in polar coordinates, relative to the robot’s local coordinate system. Part of the
input are also the four sensor readings that are geometrically closest to (z,y). The out-
put of the network, after training, is an approximation of P(c;, | o). Training data for
learning P(c,, | 0) is obtained by placing the robot randomly in a known environment and
recording a sensor reading. For each (2, y) within the robot’s perceptual range (which in
our implementation is between 3 and 5 meters), a training pattern is generated, whose label
reflects whether or not the (z, y) is occupied. After appropriate training [90, 94, 127], the
output of the network can be interpreted as the desired conditional probability P(c;, | o).
Figure 10b shows examples of sonar sensor readings and the corresponding probabilities
generated by the trained neural network.

In conjunction with any of the approaches presented in [50, 51, 88, 123, 127, 128, 130},

the mapping algorithm is powerful enough to generate consistent maps from scratch. Two
example maps are shown in Figure 11. Both maps were constructed in less than 1 hour.
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Figure 11: Maps learned from scratch: (a) the Deutsches Museum Bonn, and (b) the Di-
nosaur Hall of Pittsburgh’s Carnegie Museum of Natural History, built in preparation of the
installation of a similar tour-guide robot. Both maps were acquired in less than an hour.

The scarceness of the map shown in Figure 11a. however, illustrates the large number of
undetectable obstacles (cf. the hand-crafted map shown in Figure 18). Because of this, we
chose to provide RHINO with a hand-crafted CAD map instead.

3.2.3 Integration of Multiple Maps

RHINO possesses two major proximity sensor systems, a ring of 24 ultrasonic transducers
(sonars) and a pair of laser range finders. Both sensor systems cover a full 360 degree
range. Since the perceptual characteristics of both systems are quite different, and since
they are mounted at different heights, separate maps are built for each sensor.

From those, and from the hand-supplied CAD map, a single map is compiled using the
conservative rule
P(cnt) = max{P(clae), P(en™), P(cSAP) } (23)
where the superscript “int” marks the integrated map and the various superscripts on the
right hand-side correspond to the respective maps. The integrated map is used for all navi-
gational purposes. The reader may notice that the integration rule (18) is inappropriate for
map integration; such a rule could easily dismiss obstacles that are only detectable by one
of the sensor systems.

Figure 12 shows an example of the various maps and their integration. Other examples
of integrated maps are shown in Figure 13. These examples were recorded during peak
traffic hours. In both cases, a massive congestion made it impossible to progress along
the original path. The robot’s ability to modify its map and hence its paths on-the-fly was
absolutely essential for the high reliability with which the robot reached its destinations.
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(a) CAD map (b) laser map (c) sonar map (d) integrated map

Figure 12: Integrating multiple maps: (a) CAD map, (b) laser map, (c) sonar map, and (d)
the integrated map. The scarceness of the sensor-based maps, when compared to the CAD
map, indicates how few of the obstacles are actually detectable.

4 Planning and Execution

RHINO motion control is implemented hierarchically, using three different modules for
generating control. These are, in increasing levels of abstraction:

1. Collision avoidance. This module directly sets the velocity and the motion direc-
tion of the robot so as to move in the direction of a target location while avoiding
collisions with obstacles. It is the only module that considers the dynamics of the
robot.

2. Motion planner. The motion planner consults the map to find shortest paths to an
exhibit. The path is communicated to the collision avoidance module for execution.
Since maps are updated continuously, the motion planner continuously revises its
plans.

3. Task control module. The task control module coordinates the various robot activ-
ities related to motion and interaction. For example, it determines the sequence at
which exhibits are visited during a tour, and it also determines the sequence of steps
involved in the dialogue with the user.

The hierarchical organization is fairly classical [75]. Each module has its own way to
monitor the execution and react accordingly. In the museum, the robot was always in
motion—unless, of course, it intentionally stopped to explain an exhibit.

4.1 Collision Avoidance

The task of the collision avoidance module is to determine the actual motion direction and
velocity of the robot so as to operate the robot safely while maximizing its progress towards
its goal location. The majority of literature on mobile robot collision avoidance suffers from
two limitations, both of which are critical in environments like the museum.
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Figure 13: Two integrated maps, acquired in situations where a massive congestion of the
museum forced the robot to take a detour.

1. Inability to handle invisible obstacles. Virtually all existing methods for collision
avoidance are purely sensor-based, i.e., they only consult the robot’s sensors to de-
termine collision-free motion [10, 42, 62, 68, 69, 118]. If all obstacles can be sensed,
such strategies suffice. However, since some of the obstacles in the museum were
invisible, a purely sensor-based approach would have been likely to fail.

2. Inability to consider dynamics. With few exceptions [42, 118], existing approaches
model only the kinematics of the robot and ignore dynamic effects such as inertia.
At lower speeds (such as 20 cm/sec), the dynamics of mobile robots can safely be
ignored. At higher speeds (such as 80 cm/sec), however, the robot’s inertia can pro-
hibit certain maneuvers, such as sudden stops or sharp turns. Since one of the re-
quirements in the museum was to operate at walking speed, it was essential that the
robot’s dynamics were taken into account.

RHINO’s collision avoidance module, which is called uDWA (short for: model-based dy-
namic window algorithm), specifically addresses these limitations [44]. pDWA consults
a hand-supplied map of the environment to avoid collisions with obstacles that cannot be
sensed. The map is also used to bound the area in which the robot operates. To ensure safe
motion at high speed, constraints imposed by the robot’s dynamics are explicitly consid-
ered.

4.1.1 The Dynamic Window Algorithm

The key idea of uDWA is to choose control directly in the velocity space of the robot, that
is the translational and rotational velocity. As shown in [42], robots with fixed velocity
always travel on a circular trajectory whose diameter is determined by the ratio of transla-
tional and rotational velocity. Motor current (torque) change the velocity of the robot and,
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Fig. 14: Scan of the laser Fig. 15: Obstacle line field, Fig. 16: Obstacle line field

sensors, missing much of the purely sensor-based. enriched using virtual sen-

large center obstacle. sors. The circular trajec-
tory visualizes the control, as
chosen by uDWA.

as a consequence, its motion direction. The problem of collision avoidance is, thus, the
problem of selecting appropriate velocities for translation and rotation.

In regular time intervals (every .25 seconds), uDWA chooses velocities so as to best
obey various hard and soft constraints:

1. Hard constraints are vital for a robot’s safety and are imposed by torque limits.
#DWA considers two types of hard constraints: torque constraints and safety con-
straints. Torque constraints rule out velocities that physically cannot be attained
(e.g., a fast moving robot cannot take a 90 degree turn). Safety constraints rule out
velocity settings that would inevitably lead to a collision with an obstacle. Notice
that hard constraints do not specify preferences among the different control options;
neither do they take into account the robot’s goal.

2. Soft constraints express preferences for both the motion direction and the velocity
of the robot. ,DWA measures the progress towards the goal by trading off three dif-
ferent soft constraints, which measure (1) translational velocity, (2) heading towards
the target position, and (3) forward clearance. If combined in the right ratio, these
criteria lead to goal-directed behavior while graciously avoiding collisions.

Consider the situation depicted in Figure 14 in which the robot is nearly in straight motion
at a translational speed of about 40cm/sec. Figure 17 depicts the whole velocity space, in
which each axis corresponds to a velocity (translational and rotational). The robot’s current
velocity is in the center of the small rectangular box in the diagram, called the dynamic
window. This window includes all velocities that can be attained in the next 0.25 seconds
under the robot’s torque limits. Nearby obstacles carve out regions in the diagram (shown
there in white), as those velocities would inevitably lead to a collision. The remaining
velocities are then evaluated according to a superposition of the three soft constraints listed
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A 90 cm/sec

-90 deg/sec 90 deg/sec

Fig. 17: Each control is a combination of translational (y-axis) and rotational (z-axis)
velocity. The darker a control, the higher its value, Also shown here is the dynamic window
of velocities that can actually be attained. The cross marks the control chosen by yDWA.

above, which favors velocity vectors with high translational velocity and for which the
robot’s heading direction points towards the goal. The overall evaluation of each velocity
pair is represented by its grey level, where darker values correspond to velocity pairs with
higher value. The cross marks ©DWA's final selection, which makes the robot follow the
(circular) trajectory shown in Figure 16.

4.1.2 Integrating Sensor Readings and Maps

pDWA integrates “real” proximity measurements, obtained from the robot’s various sen-
sors (tactile, infrared, sonar, laser), with “virtual” proximity measurements, generated us-
ing a map of the environment. Figure 18 shows the map that was used in the museum for
this purpose. This map marks as dark grey all regions that contain obstacles that cannot
be sensed. This map was also used to limit the robot’s operational range. By adding ap-
propriate virtual obstacles (shown in light grey) it can be ensured that the robot does not
accidentally leave the area where it is supposed to operate.

Just like the real sensors (tactile, infrared, sonar, laser), the virtual sensors in uDWA
are assumed to be mounted on a circular array around the robot. The generation of virtual
measurements is not straightforward, as the robot never knows exactly where it is; instead,
it is given the belief P(¢) that assigns conditional probabilities to the various locations &.
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ary of the robot’s operational area.

At first glance, one might want to use the maximum likelihood position
& = argmaxP(§) (24)
3

to generate virtual proximity sensor measurements. However, such an approach would be
brittle, since it ignores the robot’s uncertainty. #DWA uses a more conservative rule which
takes uncertainty into account, by generating virtual measurements so that with high like-
lihood (e.g., 99%), virtual measurements underestimate the actual distance to the nearest
object. To explain how this is done, let us first consider situations in which the robot posi-
tion £ is known. Recall that dist(£) denotes the distance an ideal (noise-free) sensor would
measure if the robot’s position were &, and let X denote a random variable that models the
measurement of this ideal sensor. Obviously, the probability P(X = o | ) is given by a
Dirac distribution:

_ _ 1, if o = dist(§)
P(X=ol¢) = { 0, ifo+ dist(€) (25)

In our case, the robot only has a probabilistic belief P(£) as to where it might be. Under
this belief, the probability that the sensor returns a value o is given by

P(X=0) = [P(X=0]€) P de. (26)
Consequently, the probability that the sensor measures a value larger than o is given by

P(X >0) = / . PX =€) P() do @7
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#DWA generates virtual measurements using a conservative rule: The measurement of a
virtual sensor is the largest distance that, with 99% probability, underestimates the true
distance.

0o* = max{o: P(X > o) > .99} (28)

Let us illustrate this approach using two examples. Figure 7 show two situations, one
in which the robot is uncertain about its position, and one in which it is fairly certain.
Both situations induce different densities P(X = o), which are shown in Figure 19. The
solid curve depicts P(X = o) in the uncertain case, whereas the dashed curve illustrates
P(X = o) when the robot is certain. As is easy to be seen, P(X = o) is fairly unspecific
in the uncertain case, whereas it is narrow in the certain case. The vertical lines (solid and
dashed) indicate the virtual reading that yDWA generates in either situation. With 99%
probability, the real distance is larger than the distance suggested by the virtual reading.
This conservative rule ensures that the robot does not collide with any of the invisible
obstacles, unless it assigns less than 1% probability to its actual position.

Both virtual and real measurements form the basis for determining the robot’s motion
direction and velocity. Figure 16 shows the integrated sensor information (real and vir-
tual). Figure 16 also shows the trajectory chosen by xDWA, which safely avoids collision
with the center obstacle. This figure demonstrates that a purely sensor-based approach is
inappropriate.

The collision avoidance module proved to be highly effective in the museum. Because
the unified approach to setting speed and motion direction, the approach often maintained
walking speed even in cluttered environments. The robot reacted quickly when people
blocked its way, which prevented visitors from perceiving the robot as a potential threat.
We never observed that parents kept their children—many of whom were much shorter than
the robot—from approaching the robot.

4.2 Motion Planning

The collision avoidance module only considers local constraints. As any local motion
planning method, cannot cope with U-shaped obstacles. RHINO’s motion planning module
takes a more global view. Its task is to determine globally shortest paths to arbitrary target
points. Paths generated by the motion planner are then communicated to the collision
avoidance routine for execution.

The idea for path planning is to let the robot always move on a minimum-cost path to
the next exhibit. The cost for traversing a grid cell (z, y) is proportional to its occupancy
value P (c;:“;) (cf. Equation (23)). The minimum-cost path is computed using a modified
version of value iteration, a popular dynamic programming algorithm [4, 61]:

1. Imitialization. The grid cell that contains the target location is initialized with 0, all
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Fig. 20: The motion planner uses dynamic programming to compute the shortest path to the
nearest goal(s) for every location in the unoccupied space, as indicated by the gray shading.
Once the distance has been computed, paths are generated by hill-climbing in distance
space. An additional post-processing step increases the side-clearance to obstacles.

others with oo:

V,, {0, 1f(:1:,y.)ta.rgetcell
’ oo, otherwise

2. Update loop. For all non-target grid cells (z, y) do:

Ve ¢ min (Verazy+ay + P(Cosrazy+ay)}

Az=-1,0,1
Ay=-1,0,1

Value iteration updates the value of all grid cells by the value of their best neighbors,
plus the costs of moving to this neighbor (just like A* [99]). Cost is here equivalent
to the probability P(c,,) that a grid cell (z,y) is occupied. The update rule is
iterated. When the update converges, each value V, , measures the cumulative cost
for moving to the nearest goal. However, control can be generated at any time, long
before value iteration converges.

3. Determine motion direction. To determine where to move, the robot generates a
minimum-cost path to the goal. This is done by steepest descent in V/, starting at the
actual robot position. The steepest descent path is then post-processed to maintain a
minimum clearance to the walls. Determining the motion direction is done in regular
time intervals and is fully interleaved with updating V.
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Figure 20 shows V after convergence for a typical situation in the museum, using the map
shown in Figure 18. The grey-level indicates the cumulative costs V' for moving towards
the goal point. Notice that every local minimum in the value function corresponds to a
goal, if multiple goals exist. Thus, for every point (z, y), steepest descent in V' leads to the
nearest goal point.

Unfortunately, plain value iteration is too inefficient to allow the robot to navigate and
learn maps in real-time. Strictly speaking, the basic value iteration algorithm can only be
applied if the cost function does not increase (which frequently happens when the map is
modified). This is because when the cost function increases, previously adjusted values V'
might become too small. While value iteration quickly decreases values that are too large,
increasing too small a value can be arbitrarily slow [123, 127]. Consequently, the basic
value iteration algorithm requires that the value function be initialized completely (Step 1)
whenever the map—and thus the cost function—is updated. This is very inefficient, since
the map is updated almost constantly. To avoid complete re-initializations, and to further
increase the efficiency of the approach, the basic paradigm was extended in the following
way:

4. Selective reset phase. Every time the map is updated, values V., that are too small
are identified and reset. This is achieved by the following loop, which is iterated:

For all non-goal (z, y) do:

Vey ¢— if Ve < Axlni{lo 1 {Vetazyray + P(CotAvy+ay)}

Ay=-1,0,1

Notice that the remaining V,; ,-values are not affected. Resetting the value table bears
close resemblance to value iteration.

5. Bounding box. To focus value iteration, a rectangular bounding box [Zmin; Zmax]
X [Ymin, Ymax 1S maintained that contains all grid cells in which V,., may change.
This box is easily determined in the value iteration update. As a result, value iteration
focuses on a small fraction of the grid only, hence converges much faster. Notice that
the bounding box bears similarity to prioritized sweeping [95].

Value iteration is a very general procedure, which has several properties that make it attrac-
tive for real-time mobile robot navigation:

e Any-time algorithm. Value iteration can be understood as an any-time planner [33],
since it allows the generation of a robot action at (almost) any time, long before value
iteration has converged. It allows the robot to move in real-time, even though some
of its motion commands might be sub-optimal.

¢ Full exception handling. Value iteration pre-plans for arbitrary robot locations. This
is because V' is computed for every location in the map, not just the current location
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of the robot. Consequently, the robot can quickly react if it finds itself in an unex-
pected location, and generate appropriate motion directions without any additional
computational effort. This is particularly important in our approach, since the colli-
sion avoidance module adjusts the motion direction commanded by the planner based
on sensor readings and dynamic constraints.

In the museum, the motion planner was fast enough for real-time operation. In grid maps
of size 30 by 30 meter and with a spatial resolution of 15cm, optimized value iteration,
done from scratch, requires approximately one to five seconds on a SUN Sparc station.
In cases where the selective reset step does not reset large fractions of the map (which is
the common situation), value iteration converges in much less than a second. Figure 13
shows situations in which a passage is temporarily blocked, along with partially executed
plans generated by the motion planner. Such situations occurred frequently in the museum,
and without the ability to dynamically change the map and generate new plans, the robot
would have frequently been stuck for extended durations of time. The motion planner,
together with the collision avoidance and the various state estimation modules described
above, provided the robot with the ability to safely move from one exhibit to another, while
adjusting the velocity to the circumstances, shipping around obstacles when possible, but
choosing completely different trajectories if passages were blocked.

4.3 High-Level Task Control

The task control module coordinates the various robot activities related to motion and user
interaction at the highest level. It transforms abstract, user-level commands (such as: “give
tour number three”) into a sequence of appropriate actions, where actions either correspond
to motion commands (e.g., “move to exhibit number five”) or control the robot’s user inter-
face (e.g., “display image four” and “play pre-recorded message number seventeen”). The
task control module also monitors the execution and modifies task-level plans if necessary.

In the museum exhibit, the primary role of the task control module was to determine the
order at which exhibits were visited, and to control the user interaction to ensure the robot
functioned in accordance to the user’s demands. When tours were given to real visitors, the
job of the task control module was to monitor and control the dialogue with the visitor, and
to monitor plan execution. Internet users were able to compose tours by selecting individual
tour items. Since multiple Internet users often sent commands at the same time, there was
a combinatorial problem of sequencing exhibits appropriately.

RHINO?’s task control monitor is an augmented version of GOLOG, which has been
described in depth elsewhere [85]. GOLOG is a first-order logical language that represents
knowledge in the situation calculus [86]. It uses a built-in theorem prover to generate plans
and to verify their correctness [93]. Programs (and plans) in GOLOG are sequences of
elemental actions expressed in a logical language using if-then-else rules and recursive
procedures. GOLOG also requires the programmer to provide an abstract model of the
robot’s environment (a domain theory), describing the effects of its actions. The key benefit
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proc internet-tourguide
while (3 exhibit) request(exhibit) \ next(exhibit) N\ —visited(exhibit) do
(7 exhibit).goto(exhibit) ; explain(exhibit)
endWhile
goto(parking-position)
endProc

proc goto(loc)
if robotLocation(robotloc) N robotloc # loc then drive(loc) endIf
endProc

Table 3: Fraction of the GOLOG program for the Internet tour-guide robot

of GOLOG is that it facilitates designing high-level controllers by seamlessly integrating
programming and problem solving [85, 86]. Table 3 depicts an example GOLOG program
for scheduling requests by Internet users. It basically specifies that the robot shall serve all
pending requests by moving to the corresponding position and explaining it, and return to
its homing position thereafter.

Unfortunately, GOLOG, in its current form, suffers from several limitations such as the
lack of sensing, interaction, and execution monitoring.2 Also, there is a mismatch between
the level of abstraction of GOLOG actions and those the robot is able to perform, thus
making it difficult to directly control the low-level software from GOLOG:

Sensing and Interaction: GOLOG is unable to accept and react to exogenous events. It
cannot handle plans conditioned on events not known in the beginning of program
execution. In the museum, the robot’s actions are, of course, conditioned on user
input and various other circumstances, and the ability to react to exogenous events is
essential.

Execution monitoring: By default, GOLOG assumes that actions always succeed if their
preconditions are met. It does not monitor the execution of its actions. In prac-
tice, however, actions can fail, and it is important that the robot reacts adequately.
For example, the action wait_for_user_request () often does not result in a
user response, and timeout mechanisms have to be employed to avoid getting stuck
indefinitely.

Level of Abstraction: The primitive actions provided by RHINO’s low-level software com-
ponents are too fine-grained to be used directly in GOLOG. For example, the action
goto(exhibit) involves a collection of low-level control directives, such as setting
track-points for the cameras, setting target locations for the motion planner, turning

2In recent work, which was not available when RHINO’s software was developed, extensions of GOLOG
were proposed which address these shortcomings [31, 32, 81].
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the robot towards the exhibit after arrival, etc. While in principle, GOLOG can cope
with any granularity, dealing with low-level action sequencing at the most abstract
level would make GOLOG programs cumbersome and difficult to understand.

These difficulties are overcome by an intermediate software layer, called GOLEX [54], a
runtime and execution monitoring system for GOLOG, which extends GOLOG in three
aspects:

e GOLEX integrates sensing and user interaction capabilities into GOLOG. It enables
the programmer to formulate conditional programs. Action sequences can be condi-
tioned upon exogenous events (such as the arrival of a tour item request) and timer
events. If necessary, GOLEX can activate GOLOG’s planner to generate new plans
in reaction to unexpected events.

e GOLEX permanently monitors the execution of the various concurrent actions of the
underlying robot control system. If it detects a failure, it chooses appropriate actions
for recovery and updates the internal state accordingly, so that GOLOG can resume
its operation.

e GOLEX decomposes the primitive actions specified in GOLOG into a macro-like
sequence of appropriate directives for the robot control system, thereby bridging the
gap between GOLOG’s abstract task-level programs, and the remaining robot control
software.

Table 4 shows an excerpt of RHINO’s GOLEX program. This program segment imple-
ments, in a Prolog-like notation, the re-scheduling of new tour items by calling GOLOG
to compute a new plan, and the various commands involved when moving from one item
to another. This program illustrates how high-level actions, such as drive(location), are
decomposed into sequences of lower level actions. In particular, the drive(location) action
involves setting the appropriate tracking point for the cameras, blowing its horn, playing
music thereafter, initiating the motion by informing the motion planner, turning the robot
towards the exhibit upon arrival, and continuing with the next action in the schedule. The
program segment also illustrates how GOLEX can react to exogenous events (in this case:
requests for tour items) and change the execution accordingly.

As an example, consider a situation where RHINO is waiting in its parking position
and receives a tour request for the exhibits 1 and 12. GOLOG then generates the plan

do(drive(p), do(explain(el2), do(drive(el2), do(explain(el), do(drive(el), s0))))).

which is graphically illustrated by Figure 22. Now suppose RHINO receives a new re-
quest for exhibit 5 while it explains exhibit 1. In this case GOLEX uses the predicate
updateSchedule to initiate replanning using GOLOG’s planner. Since exhibit 5 is
closer than exhibit 12, the plan is revised to

do(drive(p), do(explain(el2), do(drive(el2), do(explain(e5), do(drive(e5), ...))))).
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Fig. 21: Schedule of tour items for Fig. 22: Re-scheduled plan after re-
the exhibits 1 and 12. ceiving a request for a exhibit 5.

The resulting plan for the tour-guide is illustrated in figure 22. By providing these methods
for executing primitive actions, reacting to user requests, and monitoring the progress of
the robot, GOLEX provides the necessary “glue” between GOLOG and the rest of the robot

software.

5 Human-Robot Interaction

An important aspect of the tour-guide robot is its interactive component. User interfaces
are of great importance for robots that are to interact with “normal” people. In settings such
as the museum, where people typically do not spend extensive amounts of time with the
robot, two criteria are most important: ease of use, and interestingness. The user interfaces
must be intuitive, so that untrained and non-technical users can operate the system without
instruction. Interestingness is an important factor in capturing people’s attention.

RHINO possesses two user interfaces, one on-board interface to interact with people
directly, and one on the Web. The on-board interface is a mixed-media interface that inte-
grates graphics, sound, and motion. The Web-based interface uses graphics and text. The
interactive component was critical for RHINO’s user acceptance in the museum. Visitors
of the museum paid considerably little attention to the fact that the robot navigated safely
from exhibit to exhibit. Instead, many seemed to be most intrigued when the robot inter-
acted with them in some noticeable way. Some of RHINO’s most enthusiastic users were
less than six years old; others were over 80. The vast majority of users had not been ex-
posed to robots prior to visiting the museum. Since the majority of visitors stayed less than
15 minutes, it was critical that RHINO’s interface was easy-to-use and robust.
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exec( [], Done, Schedule ).

exec ([explain(Exhibit) |ToDo], Done, Schedule ) :-
explain( Exhibit ),
updateSchedule( [explain(Exhibit) |Done], Schedule,
NewToDo, NewSchedule ),
exec ( NewToDo, [explain(Exhibit) |Done], NewSchedule ).

exec ([drive (L) | ToDo], Done, Schedule ) :-
position(L, (X, Y)),
panTiltSetTrackPoint ( (X, Y)),
soundPlay (horn),
soundPlay (jamesBondTheme)
robotDrivePath([ (X, Y)1),
robotTurnToPoint ( (X, Y)),
exec (ToDo, [drive(L) |Done], Schedule).

Table 4: Implementation of primitive actions in GOLEX.

5.1 Mixed-Media User Interface

RHINO’s on-board control interface integrates graphics, motion, and spoken, pre-recorded
language and sound.

1. Initially, visitors can select a tour or, alternative, listen to a brief, pre-recorded expla-
nation of the system (the “help text”). They indicate their choice by pressing one out
of four colored buttons, shown in Figure 23.

2. When RHINO moves towards an exhibit, it displays an announcement on its screen.
It also uses its camera-head to indicate the direction of its destination, by continually
pointing the camera towards the next exhibit. While in motion, the robot plays music
in order to entertain the people.

3. At each exhibit, the robot first plays a brief pre-recorded verbal explanation. Users
are then given the choice to listen to more text or to move on to the next exhibit.
Users are informed about their choice through the graphical display, and they can
indicate their selection by pressing one of two lit buttons next to the screen. If no
user presses a button within five seconds, the robot defaults to the fast version of the
tour where a minimum of verbal explanations are provided.

4. When a tour is finished, the robot returns to a pre-defined starting position in the
entrance area where it waits for new visitors.

Figure 23 illustrates the interaction between visitors in the museum and the robot. The left
images shows an example screen of the graphical display. All text was in German. The
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Fig. 23: On-board interface of the tour-guide robot. The users were required to press the
buttons right form the display to choose between different options (left image). During the
tour the robot used its camera to point to the exhibits. It showed text and graphics on its
display and played pre-recorded sounds from CD to explain the exhibits (right image).

four colored buttons adjacent to the screen were the sole input interface. In the museum,
people consistently grasped the main aspects of the interface within seconds. They were
able to select a tour without instruction. Often, they did not realize immediately that they
were given the choice to obtain more detailed explanations, once a tour was started. After
visiting the third exhibit or so, users were usually aware of this option and made use of it.

5.2 Web Interface

RHINO’s Web interface consists of a collection of Web pages®, which serves four main
purposes.

1. Monitoring.

2. Control.

3. Providing background information.

4. Providing a discussion forum.

The interface enabled remote users to control the robot and to observe it, along with the
museum and the people therein.

Three of the most frequently visited pages of the Web interface are shown in Figure 24.

The page on the left enables users to observe the robot’s operation on-line. The left image
includes camera images obtained with one of RHINO’s cameras (left) and taken with a

3See http://www.cs.uni-bonn.de/ thino/tourguide/
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Fig. 24: Popular pages of the Web interface. The left image shows a page with on-line
images from the museum, including background information about the exhibits and further
hyper links. The middle image contains a screen dump of a page for smooth animations of
the robot’s trajectory and actions based on a Java applet. The right image shows the control
page, where Web-users can specify where they want the robot to go.

fixed, wall-mounted camera (right). The center of this page shows a map of the robot’s en-
vironment from a bird’s eye perspective, along with the actual location of the robot and the
exhibits. The bottom portion of this page has two functions. When the robot is moving, it
indicates which exhibit RHINO is moving towards. Once an exhibit is reached, information
is provided about this specific exhibit, including hyper-links to more detailed background
information. All information on this page is updated synchronously in approximately five
second intervals, or when the robot reaches or leaves an exhibit. Each user’s Web browser
automatically reloads this page in periodic time intervals. The update rate can be specified
by the user in accordance to the speed of his communication link (the default is 15 seconds).

To provide more frequent updates of the robot’s state we additionally provided a Java
page illustrating the current position of the robot and explaining the robot’s current action
(see middle image of Figure 24). This Java applet directly connects to a dedicated server
and updates the position of the robot every 0.3 seconds, thereby providing smooth anima-
tions of the robot’s motion in the map. At the bottom of the map this applet also scrolls text
explaining the current robot mode (e.g., “approaching exhibit 5”).

The middle image of Figure 24 serves as the remote control interface of the robot. To
send the robot to an exhibit, users can click on exhibits directly in the map or, alternatively,
highlight one or more exhibits in the list on the left side of this Web page. For four of the
exhibits (9—12) the users could additionally specify the heading from which they wanted
to see the images. Up to 12 different viewpoints were admissible for these exhibits. A
particular viewpoint could be chosen by clicking on the appropriate region closely around
the exhibit. When hitting the “select” button, the selected exhibits are queued. Users can
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Fig. 25: Typical situation in which visitors try to challenge the robot, here by intentionally
blocking its path.

also identify themselves by typing their name (or acronyms) into the name box at the top
of this page. This name is then displayed in the queue. The task planner schedules exhibits
so as to minimize the travel distance. Requests of multiple users for the same exhibits
are accommodated in parallel, so that the exhibit is visited only once. Thus, the length of
the queue is limited by the number of different exhibits (13 exhibits plus 36 view points
in the museum). At times, there were over 100 pending requests of different individual
users. Particularly popular was the tour item “the crew,” which was only available to Web
users. Upon sending the robot to the crew, the robot positioned itself so that it could see the
off-board computers and, at rare occasions, some of us.

When the robot was controlled through the Internet, we quickly learned that the robot
was too fast to convince some Web-users that there was a physical machine. This was
specifically the case during a so-called “Internet night,” a scheduled event that took place
outside the opening hours of the museum. Because the museum was empty, most of the
time the robot traveled close to its maximum speed of 80cm/sec. With an update rate of
15 seconds per update, Web users saw mostly images of exhibits (where the robot waited
for 30 seconds), but they rarely saw the robot traveling from one exhibit to another. This
problem was remedied by lowering the maximum speed of the robot to 30 cm/sec. Now
Web users saw images recorded along the way, raising their confidence that there might
actually be a real machine (as if we couldn’t have pre-recorded those images as well).

5.3 Reaction to People

RHINO’s ability to react directly to people was among the most fascinating aspects of the
entire system. If people stepped in the robot’s way, RHINO reacted in multiple ways, each
of which was characterized by a different time constant:

1. The first behavior of the robot is initiated by its collision avoidance, slowing the robot
down so as to avoid a collision. If the obstacle is not contained in the map (and thus
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most likely a person), the robot blows its horn. Such obstacles are detected using the
inverse entropy gain filter, as described in Section 3.1.7.

2. The next visible behavior is an attempt to find a local detour around the person. This
behavior is also driven by the collision avoidance method. At the same time, the map
is modified.

3. If the blockage persists and no local detour exists, the modification of the map leads,
after a few seconds, to a global detour. The robot then turns away and chooses the
second best global path.

In the museum, people were all but cooperative. Many shared an ambition to “break the
system.” Attempts to do so included intentionally blocking the robot’s way for extensive
periods of time, by trying to “push” it outside its operational boundary (e.g., close to the
hazardous staircase), or by lining up in a way that looked like a wall to the robot, in order to
confuse its sense of location. Typical examples of such a situations are show in Figure 25.
Luckily none of these attempts succeeded. We attribute this robustness to the extensive use
of methods that are non-reactive, in the sense that they did not base their decisions on the
most sensor readings only, as advocated elsewhere [11, 27].

RHINO’s ability to react to people proved to be one of the most entertaining aspects,
which contributed enormously to its popularity. Many visitors were amazed by the fact that
the robot acknowledged their presence by blowing its horn, and repeatedly stepped in its
way to get the acoustic “reward.” The ability of RHINO to decelerate in the presence of
people and to “ask” for clearance proved to be one of the most entertaining aspects of the
entire systems.

6 Statistics

The results of the six day deployment are summarized in Table 5 [13]. RHINO operated
for approximately 47 hours without any significant downtime. Over this period of time,
the robot traveled approximately 18.6km. More than 2,000 real visitors and over 2,000
“virtual” Web-based visitors were guided by RHINO. We counted over 200,000 accesses
to RHINO’s Web site. The robot served a total of 2,400 tour requests by real and virtual
visitors of the museum. Only six requests were not fulfilled, mostly due to scheduled bat-
tery changes at the time of the request. Thus, RHINO’s overall success-rate was 99.75%.
Whenever possible, RHINO chose its maximum speed (80 cm/sec when guiding real peo-
ple, between 30 and 50 cm/sec when controlled through the Web). The discrepancy be-
tween the top and the average speed (36.6cm/sec), however, was due to the fact that in the
presence of obstacles, the collision avoidance module was forced to slow the robot down.

During its 47 hours of operation, RHINO suffered a total of six collisions with obsta-
cles, all of which occurred at low speed and did not cause any damage. Only one of these
collisions was caused by a software failure. Here the localization module failed to compute
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hours of operation 47

number of visitors >2,000
number of Web visitors 2,060

total distance 18.6 km
maximum speed >80 cm/sec
average speed during motion 36.6 cm/sec
number of collisions 6

exhibits explained 2,400
success rate 99.75%
increased attendance >50%

Table 5: Summary of the robot’s six-day deployment period.

the robot’s position with the necessary accuracy. All other collisions were results of vari-
ous hardware failures (which were usually caused by neglect on our side to exchange the
batteries in time) and by omissions in the manually generated map (which were fixed after
the problem was observed).

Overall, RHINO was received with enthusiasm in all age groups. We estimate that more
than 90% of the museum’s visitors followed the robot for at least a fraction of a tour. Kids
often followed the robot for more than an hour. According to the director of the museum,
RHINO raised the overall attendance by at least 50%.

7 Related Work

7.1 Localization

Mobile robot localization has frequently been recognized as a key problem in robotics
with significant practical importance. Cox [30] noted that “Using sensory information to
locate the robot in its environment is the most fundamental problem to providing a mobile
robot with autonomous capabilities.” A recent book by Borenstein, Everett, and Feng [8]
provides an excellent overview of the state-of-the-art in localization. Localization plays a
key role in various successful mobile robot architectures [28, 46, 58, 72, 83, 84, 98, 104,
107, 110, 120, 119, 134] and various chapters in [75]. While some localization approaches,
such as those described in [60, 78, 120] localize the robot relative to some landmarks in a
topological map, RHINO’s approach localizes the robot in a metric space, just like those
methods proposed in [5, 125, 128].

The vast majority of approaches is incapable of localizing a robot globally; instead,




Experiences with an Interactive Museum Tour-Guide Robot 37

they are designed to track the robot’s position by compensating small odometric errors.
Thus, they differ from the approach described here in that they require knowledge of
the robot’s initial position; and they are not able to recover from global localizing fail-
ures. Probably the most popular method for tracking a robot’s position is Kalman filter-
ing [51, 52, 88, 92, 110, 121], which represent uncertainty by single-modal distributions.
These approaches are unable to localize robots under global uncertainty—a problem which
Engelson called the “kidnaped robot problem” [37]. Recently, several researchers pro-
posed Markov localization, which enables robots to localize themselves under global un-
certainty [15, 65, 100, 120]. Global approaches have two important advantages over local
ones: First, the initial location of the robot does not have to be specified and, second,
they provide an additional level of robustness, due to their ability to recover from local-
ization failures. Unfortunately, none of these methods were appropriate for the museum.
This is because previous Markov localization methods relied on extremely coarse-grained,
topological representations of the environment, making it impossible to navigate close to
“invisible” obstacles. By using a fine-grained, metric representation of space, our approach
can localize a robot with much higher accuracy, and it can also deal with a wider variety
of environments, including those that do not possess obvious geometric features such as
corridors, intersections and doors.

In addition, the vast majority of approaches differ from the method described here in
that they can only cope with static environments, that is, environments that do not possess
measurable state other than the robot’s location. These approaches are typically brittle in
dynamic environments. The approach described in [70] uses cameras pointed towards the
ceiling and thus cannot perceive most of the changes that occur in typical office environ-
ments. Unfortunately, such an approach is only applicable if the ceiling contains enough
structure for accurate position estimation. RHINO’s approach, by filtering out sensor data,
has been demonstrated to function even in highly dynamic environments. The results ob-
tained in the museum illustrate that it is capable of reliably localizing a robot even if more
than 50% of all sensor readings are corrupted by people (see also [45]).

Finally, most existing approaches are restricted in the type features that they consider.
Many approaches reviewed in [8], a recent book on this topic, are limited in that they re-
quire modifications of the environment. Some require artificial landmarks such as bar-code
reflectors [38], reflecting tape, ultrasonic beacons, or visual patterns that are easy to recog-
nize, such as black rectangles with white dots [7]. Of course, modifying the environment
is not an option in many application domains. Some of the more advanced approaches use
more natural landmarks that do not require modifications of the environment. For exam-
ple, the approaches of Kortenkamp and Weymouth [78] and Matari¢ [91] use gateways,
doors, walls, and other vertical objects to determine the robot’s position. The Helpmate
robot uses ceiling lights to position itself [70]. Dark/bright regions and vertical edges are
used in [26, 135], and hallways, openings and doors are used by the approach described
in [72, 116, 119]. Others have proposed methods for learning what feature to extract,
through a training phase in which the robot it told its location [49, 101, 125, 126]. These
are just a few representative examples of many different features used for localization.
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RHINO’s approach differs from all these approaches in that it does not extract prede-
fined features from the sensor values. Instead, it directly processes raw sensor data. Such
an approach has two key advantages: First, it is more universally applicable since fewer as-
sumptions are made on the nature of the environment; and second, it can utilize all sensor
information, typically yielding more accurate results. Other approaches that process raw
sensor data can be found in [51, 52, 88].

7.2 Mapping

RHINO’s mapping approach is a variant of the occupancy grid method. Occupancy grids
have originally been proposed by Elfes and Moravec [34, 35, 96] and since been adopted
in numerous robotic systems (e.g., [10, 12, 53, 112, 136, 137]). To date, occupancy grids
have become the most successful metric approach to mobile robot map acquisition. Our
approach differs from previous ones in that neural networks are used to learn the mapping
from sensors to occupancy values; as a result, sensor readings are interpreted in the context
of their neighbors, which increases the accuracy of the resulting maps [123, 127].

Occupancy grids, however, are not the only approach to mobile robot mapping. Chatila
and Laumond [21] proposed to represent objects by polyhedrain a global coordinate frame.
Cox [29] proposed to construct probabilistic trees to represent different, alternative models
of the environment. In his work, Kalman filters and Bayesian methods are used for handling
uncertainty. Lu, Milios and Gutmann [50, 88, 89] presented an approach that memorizes
raw proximity sensor data in a metric coordinate system, using an alignment procedure
that extracts lines from laser range finer data. Jeeves [124], an award-winning robot at
the 1996 AAAI mobile robot competition [77], constructs geometric maps incrementally
by concatenating wall segments detected in temporal sequences of sonar measurements.
Jeeves’s design was strongly inspired by the work presented here; its inability to handle
dynamic environments and its strong commitment to parallel/orthogonal walls make its
software approach more brittle than the approach described here.

A statistical approach, which addresses both mobile robot localization and metric map-
ping, has been proposed in [128, 129, 130]. This approach uses efficient statistical esti-
mators to interleave localization and mapping. It is specifically tailored towards building
maps of large, indoor environments, where the natural drift of the robot makes it difficult
to maintain an accurate sense of a robot’s position. In the current application, this is not an
issue, as an initial map of the environment is readily available.

All approaches discussed thus far fall into the metric paradigm [127]. There exists a
second, major paradigm to mapping, called fopological methods. This family of algorithms
represents environments by graphs, where nodes correspond to places and arcs correspond
to actions for moving from one place to another. Often, topological graphs are enriched by
local metric information to facilitate the navigation from one place to another. Among the
earliest successful work in this field is an approach by Kuipers and Byun [79, 80]. In their
approach, topological places are defined as points that maximize the number of equidis-
tant obstacles (a similar idea can be found in Choset’s work, who refers to such points as
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“meetpoints” [22, 23, 24]). Topological places are connected by arcs, which contain metric
information for locally moving from one place to another. The approach disambiguates dif-
ferent places by local sensor information (taken at a single node or, if necessary, at a small
number of neighboring nodes). In systematic simulations, this approach has been found to
reliably learn large maps of indoor environments, even if sensor data is noisy. However, in
these experiments the robot was equipped with a compass, which simplifies the localization
problem significantly.

A similar approach was proposed by Matari¢ [91]. Her algorithm acquires topolog-
ical maps of the environment in which nodes correspond to pre-defined landmarks such
as straight wall segments. Neighboring topological entities are connected by links. The
topological representation is enriched by distance information to help keeping track of the
location of the robot. The approach was evaluated on a physical robot and was found to
be robust in practice. Its inability to maintain an exact position estimate imposes intrinsic
scaling limitations. Moreover, since the recognition of landmarks in this approach involve
robot motion, the approach might have severe difficulties in recognizing previously visited
locations when approaching them from different directions (e.g., T-junctions).

Shatkay and Kaelbling proposed a method that learns topological map from landmark
observations [115]. Their work extends work by Koenig and Simmons [72], who inves-
tigated the problem of learning topological maps if a topological sketch of the environ-
ment is readily available. In Shatkay and Kaelbling’s work, no such assumption is made.
Their approach considers local topological information along with landmark label infor-
mation (which is assumed to be observable), to disambiguate different locations. A key
feature of their approach is the use of a recursive estimation routine (the Baum-Welsh al-
gorithm [105]) that enables the topological mapper to refine position estimates backwards
in time. As a result, their approach has built fairly large topological maps. Their work
also predates the work reported in [128, 130], which also employs the Baum-Welsh algo-
rithm to interleave mapping and localization. Other topological approaches can be found
in [25, 97, 131, 138].

7.3 Collision Avoidance

In the field of collision avoidance for mobile robots, potential field methods [69] are highly
popular. They determine the steering direction of the robot by (hypothetically) assuming
that obstacles assert negative forces on the robot and that the target location asserts a posi-
tive force. By restricting the field of view to the close vicinity of the robot, these methods
are computationally highly efficient. While the physical analogy of considering the robot
as a free-flying object is attractive, Borenstein and Koren [74] identified that in practice,
such methods often fail to find trajectories between narrowly spaced obstacles; they also
can produce oscillatory behavior in narrow corridors. An extended version of the potential
field approach is introduced in [68]. By modifying the potential function the motion of the
robot becomes more efficient and different behaviors such as wall following and tracking
can be achieved.
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The virtual force field histogram algorithm [9], which closely resembles potential field
methods, uses occupancy grids to represent information about obstacles close to the robot.
This grid is generated and updated continuously using ultrasonic proximity sensors. Boren-
stein later extended this approach to the vector field histogram [10]. In this algorithm. oc-
cupancy information is transformed into a histogram description of the free space around
the robot, which is used to compute the motion direction and velocity for the robot.

All of the approaches discussed above generate motion commands for mobile robots
under the assumption that infinite forces can be asserted on the robot—a common assump-
tion in the field of collision avoidance for indoor robots, as most robots are operated at low
speed where inertial effect can be neglected. However, to operate robots safely at higher
speeds (such as walking speed), it is necessary to take the robot dynamics into account.
Both the dynamic window approach [12, 41] and the “curvature velocity method” [118],
which despite their similarity were developed independently, are designed to deal with the
dynamics of mobile robots.

To deal with obstacles that cannot be detected by the robot’s sensors it is necessary
to integrate model-based information into reactive collision avoidance. Only considerably
small attention has been payed to this problem in the literature. In [111], an approach to
motion planning is proposed which in principle could solve this problem. The emphasis
of their work lies in the combination of global path planning and local collision avoidance.
Here, motion commands are generated based on a global model of the environment, which
is updated based on sensory input. They propose a method which efficiently extracts a path
to a goal point based on such a map. Unfortunately, the authors do not discuss the problem
of robot dynamics and uncertain position estimation. Furthermore it is not clear how the
static model of the environment is combined with the fast-changing information obtained
on-the-fly.

RHINO’s current method, called uDWA [45], is specifically designed for environments
where not all obstacles can be perceived, guaranteeing safe navigation with high probability
even if the robot is not certain as to where it is. To the best of our knowledge, this feature
is unique in the literature on mobile robot collision avoidance.

7.4 Motion Planning

Robot motion planning has been subject to intense research, as documented by a large
body of literature on this topic (see e.g., [82, 114]). The majority of work addresses more
complicated problems than the one addressed in this article, such as motion planning in
higher-dimensional and continuous space. Motion planning for holonomic mobile robots
is usually performed in 2D, ignoring costs of rotation and the dynamics of the robot. Such a
methodology yields only sub-optimal results, but greatly reduces the complexity of motion
planning, which is known to be exponential in the number of degrees of freedom [17, 106].

A popular algorithm for robot motion planning is A* [99], which bears close resem-
blance to the value iteration approach proposed here (see [71]). Both approaches can be
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used to find shortest paths to multiple goals, and they also generate values for arbitrary
locations, facilitating rapid replanning in the face of unexpected events. The issue of ef-
ficient re-planning has previously been addressed by Stentz [122], whose D* (dynamic
A¥*) planning algorithm is designed to quickly repair motion plans if the map is updated.
RHINO’s motion planner does the same; given sufficient computation time, it is guaranteed
to generate optimal plans with respect to the underlying representation.

In the AI community, conditional planning has also been a subject of intense research.
A recent textbook [109] provides a collection of references to the most important work in
this field. Almost all of the work here is focused on domains where the model is specified
by a collection of logical axioms, often expressed as STRIPS-like operators [99]. This
work usually does not exploit the highly geometric nature of robot motion planning, and
is therefore not directly applicable. State-based representations, such as the one used here,
are commonly used in the literature on partially observable Markov decision processes
(POMDPs) [64, 66, 87]. POMDPs are the mathematically the most appropriate framework
to formulate the motion planning problem, since they can encompass uncertainty both in
the map and the robot’s location. Unfortunately, the complexity of the domain does not
permit efficient planning even if today’s best POMDP algorithms were employed.

7.5 Task Planning and Control

Recent research has produced a variety of frameworks for task-level control (see e.g., [40,
117] and various chapters in [75]). To our knowledge, GOLOG is unique in its seamless
integration of a programming language and a powerful theorem prover for planning. Other
special-purpose programming languages for mobile robots, such as COLBERT [73], do
not feature built-in problem solvers. COLBERT also stays below the level of abstraction of
GOLOG in that it is designed to deal with raw sensor input and motor commands. However,
since the expressive power of the situation calculus exceeds that of STRIPS-like planners
(which rely on an implicit close-world assumption), GOLOG is less efficient than most
existing planning algorithms (see [109]).

Historically, Nilsson’s SHAKEY robot was the first, successful demonstration of the
synthesis of symbolic, Al-type problem solving and low-level control. While SHAKEY
was a milestone in the history of mobile robotics, it suffered from a lack of robustness
on the low-level side, making it too brittle to operate in domains as dynamic as the one
considered in this paper. More recently, Haigh integrated PRODIGY [19] with a suite
of low-level software developed for CMU’s XAVIER project [119]. Her system, called
ROUGE [55], uses PRODIGY to generate cost-optimal motion plans for XAVIER, a robot
navigating in the corridors of an office building. This approach differs from ours in that it
does not offer a programming option on the task control level, i.e., all plans are generated
by the planner, not by the programmer.
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7.6 Human Robot Interfaces

Most existing robots don’t possess user-friendly interfaces. This is because mobile robotics
research tends to focus on navigational issues, not on human robot interaction. Neverthe-
less, the need for more effective human robot interfaces has clearly been recognized. For
example, in his M.Sc. thesis, Torrance developed a natural language interface for teaching
mobile robots names of places in an indoor environment [131]. Due to the lack of a speech
recognition system, his interface still required the user to operate a keyboard; however, the
natural language component made instructing the robot significantly easier. More recently,
Asoh and colleagues [3] developed an interface that integrates a speech recognition system
into a phrase-based natural language interface. They successfully instructed their “office-
conversant” robot to navigate to office doors and other significant places in their environ-
ment, using verbal commands. Other researchers have proposed vision-based interfaces
that allow people to instruct mobile robots via arm gestures. For example, Kortenkamp and
colleagues [76] recently developed a gesture-based interface, which is capable of recogniz-
ing arm poses such as pointing towards a location on the ground. In a similar effort, Kahn
and colleagues [67] developed a gesture-based interface which has been demonstrated to
reliably recognize static arm poses (pose gestures) such as pointing. This interface was suc-
cessfully integrated into Firby’s reactive plan-execution system RAP [40], where it enabled
people to instruct a robot to pick up free-standing objects. A recent paper by Waldherr
and colleagues [133] extends these approaches to dynamic gestures, i.e., gestures which
are defined through motion, not just poses. Motion gestures, which are commonly used
for communication among people, provide additional freedom in the design of gestures.
In addition, they reduce the chances of accidentally classifying arm poses as gestures that
were not intended as such.

Unfortunately, while these interfaces are important steps in the right direction, they
are not quite suited for application domains as museums, where people typically interact
with a robot for an extremely short duration. Most visitors spent less than 15 minutes
following the robot through the museum, and even RHINO’s most enthusiastic supporters
stayed rarely for more than two hours. Under such circumstances, it is important that the
robot appeals to the “intuitions™ of its users. It is generally undesirable that users have to
learn how to interact with a robot, even if the nature of the interface (language, gestures)
facilitates this process. We believe that we currently lack a convincing methodology for
“intuitive” human robot interaction.

7.7 Integrations and Applications

Various researchers have devised integrated systems similar to the one described here [75,
113]. A good survey of fielded systems is provided in a recent book by Schraft and
Schmierer [113]. For example, Siemens Corp. (Germany) has recently developed a mo-
bile cleaning robot, which it successfully deployed in a supermarket [36]. Unfortunately,
much of their technology is proprietary. The robot differs from RHINO in that does not
interact with people; it also moves at much lower speed. We suspect that the basic soft-
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ware architecture is similar to the one used by RHINO. A second, prominent example of a
successfully deployed robot is Helpmate Inc.’s Helpmate robot [70]. This robot has been
deployed at dozens of hospitals worldwide, where it carries food and other items through
hospital corridors. The Helpmate does not interact with people either, but it features an
easy-to-use interface which enables nurses to tell the robot where to go.

To the best of our knowledge, the concept of a tour-guide robot was first proposed by
Horswill [59, 60], who built a robot that guided visitors through the AI Lab at MIT. This
robot, designed to demonstrate Horswill’s fast vision routines, did not require modifications
of the environment, just like RHINO. However, it lacked the ability to modify its map;
neither could it avoid collisions with invisible obstacles. RHINO’s approach relies to a
much larger degree on internal state (location, map), which accounts for its enhanced level
of robustness and capability required in environments such as the one considered here.

7.8 Robots on the Web

In recent years, several research teams have connected robots to the Web, enabling people
all over the world to command robots remotely. One of the most prominent examples is
CMU’s XAVIER robot [119], which predates the work reported here. XAVIER is equipped
with an interface similar to the one described here. Web-users can schedule requests for
moving to pre-specified locations where the robot tells a user-selected “joke,” and they can
watch camera images recorded in regular time intervals. RHINO?’s interface offers a choice
between JPEG images and Java applets; the latter option enables Web users to run a robot
simulator on their own machine, in which the robot’s location is animated continuously.
Users command both robots at an abstract level, and the low-level navigation software
ensures the robot’s safety.

Others have designed interfaces for the control of robot arms. The MERCURY sys-
tem [47], which started its operation in 1994, was one of the first tele-operated manip-
ulators on the Web. It enabled Web users to excavate artifacts buried in a sand-filled
terrarium. This system required users to assume exclusive control over the manipulator.
The TELE-GARDEN, successor of MERCURY, enabled people to plant flowers [48]. Just
like RHINO, this system was able to coordinate requests by multiple users. The “Me-
chanical Gaze Project” [102] enables visitors of a museum to examine exhibits from vari-
ous viewpoints, and with different distances. Other Web-connected robots include a tele-
operated “Eyebot”, a robot that carries a camera whose pictures are posted on the Web
(http://www.dma.nl/eyebot), and “KhepOnTheWeb”, a table-top robot that Web
users can manually move through a maze (http: //KhepOnTheWeb.epfl.ch).

8 Summary

This article described the software architecture of a fully autonomous mobile robot de-
signed to interact with people. The robot has been proven to function reliably in unmodified
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and densely populated environments, and it has equally been proven to interact successfully
with people. To reach this level of reliability, our approach extends a collection of well-
known algorithms for mobile robot state estimation, control, and user interaction, and inte-
grates them into a single system. While most of the work reported here is well-grounded
in previously approaches to mobile robotics, some critical innovations were necessary to
provide the robot with the necessary level of robustness.

RHINO’s localization method is based on Markov localization, a popular probabilistic
localization method. Our approach extends the Markov localization paradigm by a method
for filtering out noisy sensor data, which makes it extremely robust in highly dynamic en-
vironments. It also estimates the location of a robot at much higher resolution; a necessary
requirement for navigating close to obstacles that cannot be sensed. The robot inherits its
mapping algorithm from the decade-old literature on occupancy grid maps. It employs ar-
tificial neural networks for sensor interpretation, which allow it to interpret sensor readings
in the context of its neighbors. As argued elsewhere [127], such an approach improves the
robustness of the mapping algorithm to noise (such as spectral reflection). RHINO also
integrates maps from different sensor modalities.

RHINO employs a hybrid collision avoidance method (uDWA), specifically designed
to operate in environments where not all obstacles can be sensed reliably. In addition to
the sensor readings, this approach assembles “virtual” sensor readings using a map of the
environment. A key feature is its ability to generate safe motion even if the robot does
not quite know where it is. This contrasts previous methods, which are typically purely
sensor-based and would thus fail in an environment as the museum. RHINO’s motion
planner is a version of dynamic programming, which, by spreading activation through free-
space, effectively pre-plans for all possible exceptions. To accommodate the continuous
change of the map, the path planner contains a method for identifying where and when
replanning becomes necessary. Task-level control is performed by GOLOG, an integrated
programming language and theorem prover embedded in the situation calculus. While this
approach provides a powerful framework for designing high-level controllers, it alone is
inappropriate to deal with various contingencies arising in robot control. We therefore
designed GOLEX, an interface which provides the glue between GOLOG and the rest of
the software. GOLEX provides macros, conditional plans and an execution monitor.

RHINO exhibits a degree of interactiveness typically not found on other mobile robots.
It reacts to the presence of people in various ways—an aspect that we found to be essential
to spark people’s enthusiasm. Both its command interface and its interface to the Web was
specifically designed to appeal to novices. All these components are integrated through
a modular software architecture, designed to accommodate the various bottlenecks in dis- -
tributed computer networks. All computation is carried out completely asynchronously, and
the different modules communicate by sending messages to each other. Computationally-
intense modules were capable of adapting their requirements to the available resources,
which is critical in a network that was often subject to lengthy communication delays.

During its six-day installation period, the robot performed reliably and excited the visi-
tors. The robot guided thousands of users to exhibits with almost perfect reliability, travers-
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ing more than 18.5km at an average speed of almost 40 cm/sec. We did not modify the
museum in any way that would facilitate the robot’s operation; in fact, RHINO’s software
successfully coped with various “invisible” obstacles and the large number of people. We
believe that RHINO’s reliability and effectiveness in complex environments is unprece-
dented. The robot also raised the museum’s attendance by more than 50%, suggesting
that robotic applications in the field of entertainment and education might be commercially
viable.

9 Discussion

One of the key limitations of the current approach is its reliance on an accurate map of the
environment. In the Deutsches Museum Bonn, it took us about a week to manually ac-
quire the map, partially because of the non-orthogonal arrangement of exhibits and walls.
To remedy this problem, we recently devised a family of more powerful mapping tech-
niques [128, 130]. These techniques make it possible to acquire maps of large-scale, cyclic
environments from raw sensor data, collected while joy-sticking the robot through its en-
vironments (see also Section 7.2 and Figure 11). Augmenting such maps with “invisible”
obstacles is straightforward, as the robot’s localization methods can be used to accurately
determine its position. These new techniques overcome an important limitation of the ap-
proach described here, effectively reducing the installation time for a robot by more than
an order of magnitude.

Another limitation arises from the fact that the entropy gain filter, used to filter out
corrupted sensor readings, impairs the robot’s ability to recover from global localization
failure. As noted above, once the robot has lost track of its position entirely—which luckily
never happened in the museum—, the entropy gain filter may filter out all authentic sensor
readings, making it impossible for the robot to re-localize itself. Recently, we proposed
novelty filters [45], an extension of entropy gain filters that takes into account the nature
of the surprise in a sensor reading. In a systematic study using the data collected in the
museum we found that novelty filters do not suffer this limitation, while still retaining the
full advantage of the entropy gain filter. We envision that this new filter will lead to more
robust behavior in highly dynamic environments.

RHINO is just one out of a series of recent successful mobile robots [113]. Recent
research in the field of mobile robotics has led to significant progress along various dimen-
sions. Applications such as robots that guide blind or mentally handicapped people, robots
that clean large office buildings and department stores, robots that assist people in recre-
ational activities, etc., are clearly in reach, and for many of those target domains prototypes
are readily available [113]. This recent, ongoing revolution has been triggered by advances
along various dimensions. Robotic hardware has steadily become cheaper and more reli-
able. Robotic software has matured, reaching critical levels of reliability, robustness, and
flexibility.

We believe that the museum tour-guide is a prototypical example of a new generation of
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mobile service robots. Many of the challenges in the museum tour-guide domain apply to a
wide variety of mobile robot applications: the necessity to navigate through highly dynamic
and unstructured environments; the necessity to interact with people; and the necessity
to operate in environments that cannot be modified. It is quite likely that robots similar
to the one described here will soon be deployed in shopping malls, amusement centers,
technology fairs, etc., where they will be receptionists, information kiosks, waiters, guides,
but most of all: magnets that attract people. Similar robots may soon perform janitorial
services, operate at sites too dangerous for humans, or assist people in various aspects of

their lives.

Through developing RHINO’s software and watching it operate in the Deutsches Mu-
seum, we learned more than we can possibly describe in a single article. Among the most
important lessons is the recognition that mobile robot navigation has progressed to a level
at which robots can now navigate reliably even in densely populated spaces. In most as-
pects, such robots can now be installed in new sites within days, without having to modify
the environment (see also [128]). We also learned that human robot interfaces are key pre-
requisites if robots are to become part of people’s everyday lives. We found that adaptive
mechanisms are essential for operating robots in highly dynamic and unpredictable envi-
ronments, as without the capability to revise its plans, the robot would often have been
stuck. Finally, we learned that entertainment is a highly promising application domain for
mobile robotics. In most envisioned service robot applications, robots have to compete with
human labor, whereas in the entertainment sector, robots may generate revenue by simply
exploiting the fact that they differ.

The following is a highly subjective list of what we believe include some of the most
promising research directions for indoor mobile robotics research:

¢ Long living robots. How can we build software that enables robots to operate reli-
ably for many years? Such robots must be able to adapt to changes in their environ-
ments, changes in their physical properties, and they must also be able to perform
new tasks. To what extent can we build robots that survive sensor and actuator fail-
ures? Most of today’s mobile service robots are only deployed for short periods of
time and are only capable of performing a single task. A science of software mech-
anisms that enable robots to operate for extended stretches of time, and to perform
many tasks, would almost certainly lead to revolutionary changes in mobile robotics.

e Human robot interaction/cooperation. How can we build robots that can be in-
stalled and instructed by non-expert users? How can we design robots that can in-
teract with people, and support them in their everyday activities? Most of today’s
mobile robots are installed and operated by experts, and their interactive capabilities
are still poorly developed. To bring robots into the everyday life of people, advances
in various aspects of human robot interaction are urgently needed.

o Taskable robot teams. How can we build large teams of mobile robots to collabora-
tively perform interesting tasks? Such software must be able to deal with individual
robot failures and limited communication channels. We specifically lack methods
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that makes teams of robots taskable, i.e., that enable teams of robots to perform di-
verse families of user-specified tasks.

Mobile manipulation. The integration of mobility and manipulation is essential for
a wide range of service tasks. However, mobile robotics and robotic manipulations
have largely remained separate fields, and integrations of both are often brittle at best.
How can we build highly dextrous robots that can both manipulate their environment
and navigate therein?

Flexible software architectures. While recent research has led to a large corpus of
isolated component technologies, we still lack effective methods for their integration.
How can we build software architectures that facilitate the assembly of large-scale
robotics software? Learning, in particular, appears to be promising for providing the
“glue” between different components that otherwise may not fit together.

While this list is highly subjective, it seeks to identify some of the most promising new re-
search directions in mobile robotics. Progress along any of those dimensions would almost
certainly lead to interesting new science, along with practical algorithms with high societal
impact.
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